

Headline Goes Here
Speaker Name or Subhead Goes Here

DO NOT USE PUBLICLY
PRIOR TO 10/23/12Debugging Distributed Systems

Philip Zeyliger | philip@cloudera | @philz42 | Software Engineer
Strata, February 27, 2013

$whoami; whois cloudera.com

Purveyors of fine distributed software, including
HDFS, MapReduce, HBase, Zookeeper, Impala, Hue,
Crunch, Avro, Sqoop, Flume, ...

I work on Cloudera Manager (new version out
yesterday!), helping our customers focus on their
data problems, not their distributed system
problems.

if only it were as easy as
picking out the black sheep...

But it's usually more like
this... Where's Walderbug?

Why so hard?

Layers
Networks
Partial Failure

ZK

HBase

HDFS

CM

MR

Networks!

Excerpt of TCP
Connections
between
components in a
small cluster.

Writing to HDFS is a Relay Race

Client
Datanodes

When one element in the
relay race is slow, the entire

team loses.

The Patented* Two Step Process

Step 1:
Figure out
where the
problem may
be...
Find outliers in
logs & metrics,
tracing...

Step 2:
Dig in!
strace, Java, etc.

Zoom in

Rinse, Repeat
after false
starts

*not really

Preconditions

Versions the same?

DNS working? Really?

Clocks in sync?

Adding "host inspector" to
detect these common
issues helped significantly.

Versions
across the

cluster

Common (or,
unpleasant)

issues

Easy: Health tests and monitoring

Life's better when a
monitoring system tells
you where to focus.

"Not able to
communicate
with the web

server."

E-mail, with
link to the
problem

Outliers: Logs

Don't just read logs; they're full of lies.

Instead, look at distribution of log sizes.
Log Messages (INFO) per second

Why is this datanode
different from the
other datanodes?

When I look at logs, how I look at logs...

cat logs |
tr '[0-9]' N | # de-uniquify
sort | # group...
uniq -c | # count...
sort -n # summarize

Leave "fancy clustering" for the data scientists.
Unix is good enough for us.

Is it boring?

This happens all the time. Ignore it. It's log spam.

Or maybe it's periodic? Does it explain any spikes?

git grep

$find ~/src -maxdepth 2 -name
.git | wc -l
117

I have a ton of stuff checked out, ready for "git
grep," from Hadoop to the JDK.

Great way to find those unclear log messages.

Did it come and go?

This is more interesting. What happened at 9:45 and then why
did it re-start at 2:30?

Correlate with your problem period...

If you started experiencing a problem at 1:45, this might be
interesting.

A few more tricks:

Focus on a specific time period. (Quick plug: Cloudera Manager
lets you do this easily.)

If you see something you don't know about, see if it happens
everywhere to see if it's boring.

Think about it as a dataset. Logs are (host, process, time,
message), organized in that order. Free yourself from that
order, and access by message (histograms) or by time instead.

Colophon

http://philz.github.com/logvizjs/
The plots you saw today were produced with d3. See github repo
for code.

http://philz.github.com/logvizjs/
http://philz.github.com/logvizjs/

Metrics

Queries are important

A distributed system with 100 hosts has ~50,000 individual time
series.

Look for outliers

Nothing to see here;
all CPUs are pegged.

Outliers!

Why is one host pushing more IO than the other hosts?

Faceting

Fancy name for "group by"

(See ggplot2, "grammar of graphics")

Tracing

● For systems that have this, it's amazing.
● Oddly harder to do in open source,

because different layers are different
projects, and there's a chicken-and-egg
problem.

Google Dapper

Google AppEngine

Twitter Zipkin

Slowly coming to Hadoop...

HTrace (https://github.com/cloudera/htrace)

HBASE-6449 introduces to HBase

Stay tuned!

Step 2: Digging in

Web UIs

Many distributed systems expose vital information over HTTP.

This is the Right Thing. Demand it!

Know what's available in your systems.

http://omel.ette.org/blog/2013/02/06/debug-servlets/

Configuration

Is it as expected?

Is it consistent across
the cluster?

Where did that value
come from anyway?

Stack Traces

Is it deadlocked?

Is it blocked on an external
resource (e.g., a database)?

What's going on?

Application Status Pages

Are nodes missing?

What's the version of
the software?

What else shows up?

Logs
Log configurations
Metrics (and JMX)

Developers have no excuses!

Several pre-built
solutions exist for
these debug UIs.
(JavaMelody,
Jolokia)

Demand them!

Linux Toolbelt

● top: what's running; is it eating CPU?
● iotop: what's eating disk
● ps: what's running? with what options? in what dirs?
● lsof -P -n -p <pid>: what's reading what files? what has what

ports open?
● /proc has lots of goodies

Linux Hammer: strace

All interesting things happen through
system calls: reading and writing, RPCs,
etc.

How else could I
have known that
/etc/resolv.conf
had bad
permissions?
Ouch.

Quick tour of the JRE

Listing running JVMs

$sudo /usr/java/jdk1.6.0_31/bin/jps -l
23675 org.apache.hadoop.hdfs.server.datanode.DataNode
23855 org.apache.hadoop.mapred.TaskTracker
32196 sun.tools.jps.Jps
24645

Looking at stack traces of a running JVM
$sudo -u hdfs /usr/java/jdk1.6.0_31/bin/jstack 23675 | head
2013-02-20 11:13:35
Full thread dump Java HotSpot(TM) 64-Bit Server VM (20.6-b01 mixed mode):

"Async disk worker #55 for volume /data/4/dfs2/dn/current" daemon prio=10
tid=0x00007fa4c4bac800 nid=0x7f94 waiting on condition [0x00007fa4aae58000]
 java.lang.Thread.State: TIMED_WAITING (parking)

at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x00000000c3103c90> (a java.util.concurrent.locks.

AbstractQueuedSynchronizer$ConditionObject)
at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:196)
at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.

awaitNanos(AbstractQueuedSynchronizer.java:2025)
at java.util.concurrent.LinkedBlockingQueue.poll(LinkedBlockingQueue.java:424)

nid is the Linux thread id
in hex; can be used with
top H

locks taken and locks
blocked are exposed;
deadlocks are spottable
this way.

Poor Man's Profiling

Being able to get a set of stack traces is enough to build a
cheapo sampling profiler.

$cat bin/jpmp.sh
#!/bin/bash
Original version: http://blog.tsunanet.net/2010/08/jpmp-javas-poor-mans-profiler.html
Usage: ./jpmp.sh <pid> <num-samples> <sleep-time-between-samples>
pid=$1; nsamples=$2; sleeptime=$3
for x in $(seq 1 $nsamples)
 do
 jstack $pid
 sleep $sleeptime
 done | \
awk 'BEGIN { s = "" } \
/^"/ { if (s) print s; s = "" } \
/^ at / { sub(/\([^)]*\)?$/, "", $2); sub(/^java/, "j", $2); if (s) s = s "," $2; else s
= $2 } \
END { if(s) print s }' | \
sort | uniq -c | sort -rnk1

Memory Issues

Sometimes, you might have Garbage Collection issues. Look for
high CPU. Fortunately, there is instrumentation, that you can
turn on at runtime! Also, check out 'jstat'
$sudo -u mapred /usr/java/jdk1.6.0_31/bin/jinfo -flag +PrintGC 18311

$sudo -u mapred /usr/java/jdk1.6.0_31/bin/jinfo -flag +PrintGCTimeStamps 18311

$sudo -u mapred /usr/java/jdk1.6.0_31/bin/jinfo -flag +PrintGCDetails 18311

$sudo tail -f /proc/18311/cwd/logs/stdout.log

63237.523: [GC 63237.539: [ParNew: 18233K->350K(19136K), 0.0015310 secs] 54470K->36722K(83008K),
0.0016710 secs] [Times: user=0.01 sys=0.00, real=0.01 secs]

63257.848: [GC 63257.848: [ParNew: 17374K->1710K(19136K), 0.0034400 secs] 53746K->38083K(83008K),
0.0035460 secs] [Times: user=0.03 sys=0.00, real=0.00 secs]

63262.539: [GC 63262.539: [ParNew: 18360K->948K(19136K), 0.0033630 secs] 54733K->38542K(83008K),
0.0034860 secs] [Times: user=0.02 sys=0.01, real=0.00 secs]

63273.979: [GC 63273.979: [ParNew: 17972K->809K(19136K), 0.0014940 secs] 55566K->38404K(83008K),
0.0015880 secs] [Times: user=0.01 sys=0.00, real=0.00 secs]

More Unholy JVM Tricks

● Using 'jmap' to dump the heap; use Eclipse MAT to read the
state to reason about it.

● Using the fact that JSP can be compiled at runtime to insert
code into a running process.

● Using the 'instrumentation' API to inject code. BTrace is a
system for doing so.

● Grabbing JMX metrics from a running process even if hasn't
exposed them (Jolokia, https://github.com/philz/jvm-tools)

Zoomed Out

Quick Review: My Bag of Tricks

Logs: Outliers, Clustering,
Visualizing

Metrics

Tracing

HTTP-Based Debug Pages

Linux Introspection

JVM Introspection

Zoomed In

Thanks!

?
Office Hours:
10:10am Thursday Expo Hall (Table B)
philip@cloudera.com @philz42

Cloudera Booth #701
HBaseCon: June 13, 2013

